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SUMMARY 

This final report summarizes the results of a three-year collaborative project 
undertaken by NORSAR, Lawrence Livermore National Laboratory, and Deschutes 
Signal Processing.  The objective has been to explore the applicability of empirical 
matched field processing (EMFP) to the detection and classification of seismic signals 
over increasing sensor apertures.  EMFP uses the observations of historical events to 
calibrate the amplitude and phase structure of an incident wavefield over a given sensor 
configuration for particular repeating sources.  The matching statistics are calculated 
using empirical steering vectors such that the plane wavefront model, which breaks down 
over wide apertures, is avoided. Since EMFP is a narrow-band procedure, it is relatively 
insensitive to source-time history which is an advantage over correlation detectors for the 
characterization of mining seismicity.  On the small aperture ARCES array, we have 
demonstrated an excellent source classification for mines on the Kola Peninsula using 
calibrations constructed from multiple Ground Truth events. This study has highlighted 
the need to perform cluster analysis on the calibration events prior to the construction of 
ensemble covariance matrices.  A similar performance has been demonstrated on sparser, 
larger aperture arrays in Kazakhstan at frequencies at which classical f-k analysis 
demonstrably fails. In this study, the separation between different source regions was 
improved by using higher rank matched field statistics which mitigate the effects of 
variability within the individual source regions. 
 

A multitaper procedure has been developed for evaluating covariance matrices over 
short and precisely defined time-series and, while there are advantages to characterizing 
source regions with ensemble covariance matrices, single-event calibrations appear to 
work well in many cases meaning that the method is applicable also to source regions 
with few observations.  We advocate extending f-k analysis in pipeline operations to 
include both theoretical and empirical steering vectors to improve classification and 
parameter estimates for calibrated sources.  We have demonstrated single-phase EMFP to 
be a viable event detector.  Given only single observations or rank-1 matched field 
statistics, it appears that an increase in the receiver aperture makes a calibration specific 
to a more limited source region.  Higher rank matched field statistics may make broader 
regions of diffuse seismicity amenable to coherent processing over wider sensor 
apertures.  Considering the aftershock sequence from the M=7.4 October 8, 2005, 
Kashmir event, we suggest a partially coherent procedure whereby 3-component matched 
field statistics from the individual stations of KNET can be stacked to form a robust 
detector of larger events from a broad source region. Using the events detected, more 
sensitive but more source-specific fully-coherent classifiers can then be spawned. 
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1. INTRODUCTION 

Nuclear explosion monitoring is undergoing a steady progression toward event 
detection, location and identification at lower magnitudes. As the threshold for detection 
and characterization has decreased, the distances at which monitoring takes place have 
decreased correspondingly from originally teleseismic, to regional (< 2000 km) and now 
to local (< 200 km) ranges. The consequent challenges to monitoring include far larger 
numbers of events to process and the need to interpret broader categories of events. The 
principal avenues to reducing detection and estimation thresholds are to increase the 
number of monitoring stations and to increase the signal bandwidth over which coherent 
processing algorithms can be applied. Once reduced thresholds are achieved, the next 
objective will be to interpret the flood of smaller events detected, especially in areas of 
high natural and man-made seismicity. A natural by-product of extending coherent 
processing to larger apertures will be a concomitant improvement in resolution. This 
effect will provide new tools for interpreting events by making it possible to assign them 
to very specific sources such as individual mines or aftershock sequences. 

 
 Current operational seismic array processing methods for detection (beamforming) 

and parameter estimation (frequency-wavenumber analysis) have changed little since 
their introduction in the 1960s and 1970s. These methods rely upon a plane-wave 
assumption for predicting the spatial amplitude and phase structure of the seismic waves 
incident upon an array aperture. Scattering and refraction in strongly heterogeneous 
seismic propagation media constrain the size of usable coherent processing apertures 
under the plane-wave assumption to a few wave-lengths. This constraint severely limits 
the spatial resolution of beamforming and frequency-wavenumber (FK) methods. In 
addition, the spatial correlation of ambient seismic noise constrains the minimum usable 
element separation. The combination of these constraints bounds the maximum number 
of usable sensors and places a fundamental limit on coherent processing gain through 
beamforming. Existing beamforming and FK estimation methods make some attempt to 
compensate for the non-ideal spatial structure of seismic waves. For example, it is 
common to apply an amplitude correction to estimated spatial covariance matrices when 
using the indirect approach to FK spectrum estimation (i.e. by estimating the the spatial 
covariance function first, then evaluating its Fourier transform to obtain a wavenumber 
spectrum). Each element of the matrix is normalized by the square root of the diagonal 
elements in the same row and column. In direct methods (e.g. Kværna & Ringdal, 1986), 
it is now standard to integrate the FK spectrum over a band of frequencies to stabilize the 
narrow-band estimates that individually have high variance. That variance is controlled, 
in part, by the very small time-bandwidth product of signals in short analysis windows. 
However, it is likely that variance in the FK estimate from frequency to frequency also is 
a function of wavefield scattering. Recent advances in standardization of analysis 
windows and frequency bands for particular source regions have produced dramatic 
reductions in the variance of azimuth/slowness estimates derived from FK spectra 
(Gibbons et al., 2005) at least in frequency bands (below 6-8 Hz) where the wavefield is 
approximately coherent across regional-array apertures. Finally, it is common to apply 
post-processing (i.e. post-FK) vector slowness corrections (Schweitzer, 2001) to 
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azimuth/slowness measurements in an attempt to remove frequency-dependent biases 
caused (presumably) by wavefield refraction. 

 
In our view, such slowness corrections, while valuable, come too late in the 

processing sequence. Rather than to apply post-FK corrections to the slowness estimate 
derived from the strongly non-linear process of maximizing a sample FK spectrum, we 
believe it is more effective to apply pre-FK corrections to the signal observed across the 
array aperture. This approach has much in common with adaptive optics used in 
astronomy to compensate optical wavefield perturbations caused by heterogeneity and 
turbulence in the atmosphere. Recently, detection algorithms that exploit aperture-level 
calibrations have been developed that often substantially reduce detection thresholds in 
beamforming operations.  Correlation detectors (Gibbons & Ringdal, 2006) and subspace 
detectors (Harris, 2006) use previously-observed waveforms from events at specific 
sources in sensitive algorithms to detect subsequent events at those same sources. These 
algorithms rely upon the fact that the temporal and spatial structures of signals from these 
sources often are repeatable; past events constitute a spatio-temporal calibration across an 
array or network of sensors for future events. Such detectors simultaneously detect, locate 
and identify events as being consistent with previous events at the same source location, 
with the same source time history and mechanism. 

 
However, while the full exploitation of the spatial and temporal structure of the signal 

frequently leads to detectors one to two orders of magnitude more sensitive than simple 
power detectors (with conventional beamforming), such exploitation also presents two 
barriers to widespread application. Correlation methods generally have a source-region 
geographic footprint one to two wavelengths across (Harris, 1991), which can be 
ameliorated to some extent with the more general waveform representation of a subspace 
detector (Harris, 2006). Correlation methods correct incoherence across the receiver 
aperture, but trade it for incoherence across the source region; the reciprocity principle is 
at play in the correlation detection strategy. Correlation methods also are sensitive to 
source mechanism and time history, and can fail when these attributes differ from event 
to event.   

 
The sensitivities of FK methods and conventional beamforming to the plane wave 

assumption and of correlation methods to source variability leads us to consider another 
processing strategy based on temporally-incoherent, but spatially coherent signal 
processing extended with subspace techniques. Our general approach is to adapt 
narrowband empirical matched field processing, originally conceived for underwater 
acoustic applications (Baggeroer et al., 1993; Fialkowski et al., 2000) to the seismic 
monitoring task. Our processing agenda consists of (1) breaking the observed signal into 
narrow bands, (2) using empirical matched field methods to combine the near-
monochromatic resultant waveforms coherently across an aperture to achieve processing 
gain, and (3) integrating the resulting power incoherently over the narrow bands to 
achieve a wideband result.  We anticipate that this approach will ameliorate variations in 
source time history from event to event that defeat waveform correlation methods. 
Matched field processing derives its name from the realization that conventional narrow-
band beamforming is a spatial matched filtering operation for plane waves, and that more 
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general forms of spatial matched filtering are possible. In underwater acoustics, the 
velocity structure of the medium is far less variable than the seismic propagation medium 
and frequently known in detail. In such circumstances, it is possible to compute the 
detailed phase and amplitude structure of a narrowband wavefield incident on an array 
and apply the computed structure as the focusing kernel in a beamforming operation. This 
approach works well in the SOFAR channel waveguide and allows coherent processing 
across arrays to be expanded beyond the physical aperture limits implied by the 
assumption of a planar structure (locally the field is planar). A clever empirical approach 
to estimating the structure of the narrowband acoustic wavefield directly from observed 
wavefields was attempted (Fialkowski et al., 2000) but largely failed due to the spatial 
non-stationarity of the source. 

 
Under a previous DoE/NNSA funded contract, "Integrated Seismic Event Detection 

and Location by Advanced Array Processing" (Kværna et al., 2007), it was demonstrated 
that empirical matched field processing (EMFP) was able to distinguish between the 
signals on the ARCES array from very closely-spaced quarry blasts with a very high 
classification success-rate. The procedure and results have subsequently been 
documented in greater depth by Harris & Kværna (2010). The locations of the sources 
investigated are displayed in Figure 1.1 in relation to the anticipated resolution of the 
array. It is clear, from theoretical plane wavefront considerations, that the array should 
not be able to resolve between the different source regions. This is confirmed in Figure 
1.2, where it is also demonstrated that the matched field statistic based classification 
identifies the correct source mine in essentially all cases. A comparison with 
classification by standard waveform correlation methods demonstrates the superiority of 
EMFP of waveform dissimilarity from signal to signal (resulting in particular from 
complicated source-time functions) appear to be mitigated by the narrow frequency band 
nature of the matched field processing formulation. 
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Figure 1.1.  Locations of mines in the Khibiny and Olenegorsk regions of the Kola 
Peninsula together with the geometry of the ARCES array (central element, C-, and D-
rings only) and projections of the half-power contours of the array response function at 
the frequencies displayed for a Pn beam steered towards the Rasvumchorr mine on the 
Khibiny Massif. Figure modified from Harris & Kværna (2010). 

 



 7

 
 
 

Figure 1.2.  Classification of 549 events from mines on the Kola Peninsula using only the 
Pn arrival at ARCES. The theoretical plane-wave estimates (uncorrected f-k analysis, top 
panel) are unable to resolve the source mines. Applying slowness corrections (calibrated 
f-k analysis, middle panel) separates the two principal clusters well and shows some 
degree of success at separating the more sparse individual mines. The matched field 
method (EMFP, bottom panel) separates all mines with a 98.2 per cent success rate. 
Figure taken from Harris & Kværna (2010). 
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The only case attempted so far was that of compact source regions and a single small-
aperture seismic array. The objectives of this project are: 
 

 To investigate the limits of empirical matched field processing and other coherent 
array detection and parameter estimation methods as receiver aperture size 
increases from a few kilometers to many hundreds of kilometers. 

 
 To investigate techniques for extending the geographical source-region footprint 

over which empirical matched field processing and other coherent calibrated 
methods apply.  

 
Figure 1.3 provides a schematic representation of how EMFP may be expected to be 

applied to a band of diffuse seismicity. For each of several arrays, a calibration is built 
from existing observations of events from many overlapping regions.  Chapter 2 defines 
the mathematical formalism for the procedures carried out during this study, and the five 
subsequent chapters each outline a case study to address a particular angle of enquiry.  
Chapter 3 describes a case study of using matched field processing on the ARCES array 
to classify events from two closely spaced mines near Zapoljarni on the Kola Peninsula. 
The key issue to be examined here is the calculation of the multi-event matched field 
steering vectors. Chapter 4 examines sets of industrial mining events in Central 
Kazakhstan recorded by the Makanchi array (MKAR).  MKAR is larger and sparser than 
ARCES with the consequence that coherent estimation using the plane-wave model is 
unsuccessful at the high frequencies for which SNR is optimal. For this case, we also 
examine the use of higher order matched field statistics. 
 

Chapter 5 expands the application of EMFP beyond the separation of alternative 
source hypotheses to the examination of matched field statistics evaluated on continuous 
incoming multichannel waveform data for event identification (detection). Issues that 
also need to be addressed here include the sensitivity to the setting of the data window, 
and a comparison of single-array and network processing.  Chapter 6 examines the use of 
EMFP to event classification within a band of diffuse seismicity. In particular, we 
examine the comparison between empirical matched field and plane-wave model 
classification as a function of frequency.  The concept of diffuse seismicity is widened to 
examine an extensive aftershock sequence from a large earthquake in Chapter 7, 
observed by both a medium aperture seismic array and a large network. 
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Figure 1.3.  Schematic view of matched field procedures for multiple array processing of 
regions of diffuse seismicity. 
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2. FORMULATION 

Throughout this study, we will consider exclusively seismic data from arrays and 
networks. If   denotes the coordinates of sensor  relative to some reference site, then 
we denote the time-series recorded at this site by  

 
   (2.1) 
 

If  denotes the number of sensors in our array then, for a given frequency , one can 
form the  ×  spatial covariance matrix, , of which the element  is given by 

 
  (2.2) 
 

Given the relative transience of seismic signals, it is understood that  should be 
calculated on a relatively short data segment (at most a few seconds for high frequency 
studies of regional events). 
 

The complex N-vector   describes a wavefield over the 
array at the frequency  with the  defining the time-delays (phase shifts) and 
amplitudes for the waveforms at the  sites. If  denotes the Hermitian transpose, then a 
scalar of the form 

 

  (2.3) 

 
provides a measure of how consistent the data (from which  is calculated) are with 
the wavefield hypothesis defined by . 
 

Given the broadband nature of the majority of the seismic signals examined, it is 
usual to consider a wide-band statistic, summed incoherently over a range of  frequency 
bands: 
 

  (2.4) 

 
where  comprises  complex vectors of length : the so-called steering 
vectors for each of the  frequencies. The coefficients  are weights which ensure 
normalization of the broadband statistic: 
 

  (2.5) 
 
The most obvious solution is to set  (for all ) for a simple mean, although non-
uniform coefficients may be preferable due to signal-to-noise considerations or stability. 
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In the most straightforward wavefield parametrization, the plane wavefront 
assumption, we assume that the waveforms on all sensors are identical except for the 
time-delay and that the arrival time at sensor  is specified by 

 
  (2.6) 

 
where  is the arrival time at the array reference site (with coordinate vector ) and the 
slowness vector  is related to the backazimuth Θ and the apparent velocity  

 by 
 

 and   (2.7) 

 
In this case, our theoretical steering vector  is given by 
 

  (2.8) 
 
and the statistic evaluated over our  specified frequencies is 
 

  (2.9) 

Deviations of the wavefield from the predicted plane wavefront model will lead to a 
reduction in the value of the expression in Equation 2.9. The steering vector, , which 
optimizes the value of the quadratic form in Equation 2.4 is the principal eigenvector of 
the matrix . In empirical matched field processing (EMFP), it is anticipated that the 
spatial structure of an incoming wavefront over a sensor array from a source of repeating 
seismicity will be approximately the same for each event. Therefore, if a covariance 
matrix  is measured for an arrival from a source of interest (denoted by ) then 
the principal eigenvector  is likely to constitute an empirical steering vector 
which will provide a better match than the closest theoretical (plane-wave) steering 
vector, given that differences in amplitude and deviations in phase-shifts resulting from 
diffraction and scattering will be accounted for in the spectral covariance estimate. 

 
There may be many occurrences, , of a given arrival from subsequent events at the 

site of interest. In this case, it may be desirable to use many different observations on 
which to base our EMFP spatial template. We could form an ensemble covariance matrix,  

 , from the single arrival covariance matrices, , with 
 
   (2.10) 

 
where the  are weights which define the contribution for each of the single arrival 
covariance matrices. Forming the ensemble covariance matrix may provide a more stable 
estimator of the optimal empirical steering vector for the arrival by reducing the 
variability in the single arrival matrices. On the other hand, there is a danger that the 
ensemble covariance matrix will be degraded by the inclusion of arrivals from too great a 
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diversity of sources (for example, a larger source region than was at first anticipated). In 
such a case it may be better to consider multiple steering vectors, each calculated from a 
single arrival. 
 

Given that we may normalize any covariance matrix , to have unit trace (either 
prior to or after the forming of an ensemble covariance matrix), we can express our 
ensemble and single observation matched field estimators for the source region  as 
 

   (2.11) 

 
and 
 

   (2.12) 

 
respectively. Here, the steering vectors  and  are respectively the 
principal eigenvectors of ensemble covariance matrices, , and single arrival 
covariance matrices, . 
 

Estimates of the spatial structure of a given wavefield which are constructed from 
multiple observations may result in high-rank covariance matrix estimates. In such cases, 
if the eigenspectrum of the covariance matrix is dominated by a single eigenvalue, then it 
is very likely that the principal eigenvector will provide a good representation of an 
arrival. If the wavefield at a given time is not well represented by a single wavefront, the 
eigenspectrum is not likely to be dominated by one eigenvalue and a subspace approach 
may be more appropriate where we consider a signal-space spanned by more than one 
eigenvector. Our single-band steering vector  then has to be a linear combination of 
the eigenvectors corresponding to the L largest eigenvectors of the template covariance 
matrix: . If the  form the columns of the  steering matrix , with 

 
   (2.13) 

 
then the vector of coefficients, , subject to , is the principal 
eigenvector of the  matrix   . is referred to as the rank of the matched field 
statistic. 
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3.  USING MATCHED FIELD PROCESSING AS A SOURCE 
CLASSIFIER FOR REPEATING INDUSTRIAL EVENTS:  
CASE STUDY - THE KOLA PENINSULA 

While the intended focus region for this project is central Asia, it is highly beneficial 
to evaluate the methods proposed on datasets within a geographical region which has 
already been examined in great detail. Figure 3.1 displays the locations of sites of 
recurring anthropogenic seismicity close to the ARCES seismic array; the coordinates are 
provided, together with the distances and directions from ARCES in Table 3.1. A 
previous Department of Energy/NNSA sponsored collaboration between NORSAR and 
Lawrence Livermore National Laboratory (“Integrated Seismic Event Detection and 
Location by Advanced Array Processing”, contract number DE-FC52-03MA99517) 
addressed the degree to which repeating sources at regional distances from a small-
aperture seismic array could be separated using more established forms of array 
processing (Kværna et al., 2007). Central to this project was a large database of mining 
Ground-Truth information for a number of sites on the Kola Peninsula of NW Russia, 
collected under a previous DoE-sponsored project (Harris et al., 2003). In addition, the 
use of multi-channel waveform correlation detectors (Gibbons & Ringdal, 2006) was able 
to expand greatly the set of source regions to which the study could be applied, providing 
“implicit Ground Truth information” for additional sites for which only a small number 
of confirmed events were known.  
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Figure 3.1.  Locations of sites of repeating industrial or military seismicity within 500 km 
of the ARCES small-aperture seismic array in northern Norway. The Swedish 
underground mines at Kiruna and Malmberget are run by the LKAB company, and the 
copper quarry at Aitik is operated by the company Boliden. The site in northern Finland 
is used by the Finnish military to destroy outdated ammunition. The mining regions 
Zapoljarni, Olenegorsk, and Khibiny on the Kola Peninsula each contain several units 
within short distances of each other. 
 

Table 3.1.  List of sites of repeating seismicity considered displayed in Figure 3.1 
with backazimuth and distances from ARCES 

 
Identifier  Site Name  Latitude  Longitude  BAZ  Distance  Description 
  (degrees N)  (degrees E)  (ARCES)  (km)  
       
ZP1  Zapadny (Zapoljarni)  69.404  30.682    91.7   203 Quarry 
ZP2  Central (Zapoljarni)  69.397  30.742   91.8  205 Quarry 
OL1  Olenegorsk (Olenegorsk)  68.154  33.192  112.8  346  Quarry 
OL2  Kirovogorsk (Olenegorsk)  68.106  32.996  114.3  341 Quarry 
OL3  Bauman (Olenegorsk)  68.057  33.145  114.5  349  Quarry 
OL4  Oktjabrsk (Olenegorsk)  68.078  33.106  114.3  347 Quarry 
OL5  Komsomolsk (Olenegorsk)  68.075  33.385  113.4  356 Quarry 
KH1  Kirovsk (Khibiny)  67.670  33.729  118.0  393 Mine 
KH3  Rasvumchorr (Khibiny)  67.631  33.835  118.0  400 Mine 
KH4  Central (Khibiny)  67.624  33.896  118.0  403 Quarry 
KH5  Koashva (Khibiny)  67.632  34.011  117.5  406 Quarry 
KH6  Norpakh (Khibiny)  67.665  34.146  116.6  409 Quarry 
KV1  Kovdor  67.557  30.425  135.4  298 Quarry 
FES  Finnish Explosion Site  67.934  25.832  175.6  179 Military site 
AIT  Aitik  67.060  20.900  216.7  335 Quarry 
MAL  Malmberget  67.179  20.675  219.4  329 Mine 
KIR  Kiruna  67.849  20.196  231.4  286 Mine 
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The work described by Kværna et al. (2007) confirmed that a large degree of 
variability in event location estimates was due to the measurement of backazimuth and 
slowness using broadband f-k analysis in variable frequency bands, as is generally the 
case for the routine detection and location procedures. Figure 3.2 displays slowness 
estimates for initial regional P-arrivals for selected events confirmed to have taken place 
at the sites listed in Table 3.1. The top panel in Figure 3.2 displays the slowness estimates 
obtained from the fully-automatic phase detection lists for ARCES. A spread of several 
degrees is observed for arrivals from all of the sites shown, in addition to a clear and 
persistent bias for a number of sites (in particular the Aitik quarry, shown in dark blue, 
and the Olenegorsk and Khibiny regions, shown in red and green). 
 

Performing the f-k analysis in the fixed frequency band 2-4 Hz results in a significant 
improvement for the arrivals from many sites. Whereas the estimates for phases from the 
Khibiny and Olenegorsk regions are seen to overlap in the top panel, they form almost 
distinct populations in the lower panel, signaling an improvement in our ability to 
differentiate signals from the two regions using traditional array processing. The 
improvement is, however, not universal with the spread in slowness estimates at some 
sites being far larger for the 2-4 Hz band than for the variable bands; this is most likely 
the effect of a low Signal-to-Noise-Ratio (SNR) in this band. It has been demonstrated 
that many of the sites which perform poorly in the 2-4 Hz band perform far better in the 
4-8 Hz band, and that in general no single frequency band provides optimal performance 
for all sites of interest (see, for example, Kværna et al., 2004). This is another motivation 
for studying the multiple narrow frequency band technique being investigated under the 
current contract. 
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Figure 3.2:  Slowness estimates for initial P-arrivals at ARCES for events confirmed to 
have taken place at the sites displayed in Figure 3.1 selected for analyst review at 
NORSAR. The upper panel displays the slowness vector indicated from the fully-
automatic detection lists (f-k analysis performed in variable frequency bands) and the 
lower panel displays the results for the same set of arrivals using fixed-band re-estimation 
(2-4 Hz). The inset maps are for illustrative purposes, showing the true azimuthal lines 
from ARCES to each of the mines, also shown in Figure 3.1. 
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Figure 3.3:  Relative locations (from Google Earth) of the Zapadny (ZP1) and Central 
(ZP2) mines close to the town of Zapoljarni on the Kola Peninsula in northwest Russia. 
The coordinates provided for ZP1 and 69.404°N, 30.682°E, and the coordinates provided 
for ZP2 are 69.397°N, 30.742°E. The distance between the ZP1 and ZP2 mine symbols is 
approximately 2.5 km. 

 
 
There are two quarries close to the town of Zapoljarni for which the mining 

authorities provided the times of routine explosions to colleagues at the Kola Regional 
Seismological Center (KRSC) in Apatity. The Zapadny and Central mines (denoted ZP1 
and ZP2 respectively, see Figure 3.3) are separated by only 2.5 kilometers, at a distance 
of approximately 205 km from ARCES. The geographical backazimuths from the 
ARCES array to the reference coordinates provided for the ZP1 and ZP2 mines are 91.7 
and 91.8 degrees respectively. These sites are too close to each other for the ARCES 
array to be able to differentiate between the two sources by any conventional wavefield 
interpretation (Harris & Kværna, 2010). (It must also be assumed that the extent of each 
of the two mines is not insignificant compared with the distance between the reference 
coordinates provided, meaning that the actual distance between events occurring within 
the two mine complexes in many cases may be shorter than 2.5 km.) 
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Figure 3.4:  Slowness estimates for initial P-arrivals at ARCES from events at two mines 
ZP1 and ZP2 (see Figure 3.3) between October 2001 and September 2002. Estimates in 
the top left panel are from the fully automatic ARCES detection lists (variable frequency 
bands) and the remaining panels show estimates for the same arrivals processed in fixed 
frequency bands as indicated. The dotted vertical line at 91.7° backazimuth is the 
approximate great-circle backazimuth from ARCES. ZP1 and ZP2 symbols are dark and 
light blue respectively. A more complete analysis is provided in Gibbons et al. (2010). 

 
 
Figure 3.4 displays slowness estimates for initial P-arrivals from confirmed events at 

the ZP1 and ZP2 mines over a period of one year. Origin times for the events are 
provided in Table 3.2. In the top left panel, it is clear that the azimuth and slowness 
estimates obtained for the two event populations in variable frequency bands occupy a 
broad region of parameter space. Given the coordinates of a parameter estimate for an 
arrival from an unknown source, it would not be possible to say to which population the 
phase is more likely to belong. For the three fixed frequency bands displayed (2-4 Hz, 3-
6 Hz, and 6-12 Hz), not only is the variance of the two populations reduced, the two 
populations appear to form relatively distinct clusters in the velocity/azimuth parameter 
space displayed. While the clusters are not entirely distinct, such that one could not say 
without doubt to which population an unknown estimate belonged, the pattern for the two 
populations in each frequency band covers a reasonably characteristic region of 
parameter space. It is then clear that the inferred azimuth and slowness are affected by 
characteristics of the wavefield which are not modelled in the plane-wave formulation. 
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Table 3.2.  List of Zapoljarni Ground Truth events 2001-2002 used for generating 
the covariance matrices from which the empirical steering vectors are derived 

 
 

ZP1 : Zapadny ZP2 : Central 
Evt. number  ARCES P time  Evt. number  ARCES P time 
    

1  2001 283 11 26 24.613 1  2001 278 10 59 23.038 
2  2001 292 11 05 03.913 2  2001 290 11 12 26.038 
3  2001 299 11 01 24.363 3  2001 304 12 12 53.113 
4  2001 306 12 10 32.763 4  2001 318 12 05 25.213 
5  2001 313 12 11 51.738 5  2001 325 12 13 19.063 
6  2001 320 12 41 13.613 6  2001 339 12 15 09.838 
7  2001 327 12 49 57.413 7  2001 353 12 10 44.288 
8  2001 332 12 21 03.413 8  2001 360 12 39 22.038 
9  2001 341 12 02 11.963 9  2002 004 12 09 33.363 

10  2001 355 12 11 35.738 10  2002 011 12 01 54.638 
11  2001 362 12 05 53.763 11  2002 018 12 04 16.613 
12  2002 016 13 01 38.863 12  2002 025 11 51 54.313 
13  2002 023 12 39 22.238 13  2002 032 11 59 18.013 
14  2002 030 12 21 01.063 14  2002 039 12 14 13.288 
15  2002 037 12 03 32.913 15  2002 046 11 57 06.863 
16  2002 044 12 06 10.588 16  2002 051 12 02 41.088 
17  2002 053 13 02 38.988 17  2002 060 11 57 21.263 
18  2002 053 13 04 33.263 18  2002 072 12 23 43.963 
19  2002 058 11 54 57.513 19  2002 095 11 04 55.938 
20  2002 072 12 24 31.688 20  2002 102 10 59 48.513 
21  2002 074 12 19 32.613 21  2002 109 11 10 46.938 
22  2002 079 12 31 14.663 22  2002 114 11 28 15.113 
23  2002 088 12 15 10.188 23  2002 226 10 52 19.563 
24  2002 093 11 02 24.038 24  2002 249 11 07 48.713 
25  2002 107 11 03 24.538 25  2002 254 11 02 30.963 
26  2002 114 11 35 10.438   
27  2002 128 11 00 18.913   
28  2002 137 11 05 15.613   
29  2002 144 11 00 16.613   
30  2002 165 11 15 03.613   
31  2002 172 11 05 02.863   
32  2002 179 11 05 12.238   
33  2002 191 11 34 36.988   
34  2002 198 11 06 13.338   
35  2002 205 11 06 25.988   
36  2002 219 11 18 00.788   
37  2002 228 11 04 05.988   
38  2002 233 11 00 41.738   
39  2002 242 11 06 29.788   
40  2002 263 11 12 23.913   
41  2002 270 10 55 59.113   
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Table 3.3.  List of Zapoljarni Ground Truth events 2003-2004 used for evaluating 
the performance of empirical matched field processing for source identification 

 
ZP1 : Zapadny ZP2 : Central 

Evt. number  ARCES P time  Evt. number  ARCES P time 
    

1  2003 199 11 28 48.913 1  2003 183 10 58 53.488 
2  2003 206 11 14 12.963 2  2003 185 11 03 30.963 
3  2003 211 11 20 00.038 3  2003 192 10 54 32.913 
4  2003 232 11 11 51.338 4  2003 197 11 38 56.363 
5  2003 248 11 02 20.013 5  2003 218 11 01 11.788 
6  2003 267 11 20 40.688 6  2003 225 11 35 19.713 
7  2003 269 12 00 23.388 7  2003 234 11 39 50.063 
8  2003 276 11 19 58.163 8  2003 241 11 08 50.788 
9  2003 281 11 08 18.063 9  2003 255 11 25 50.588 

10  2003 295 11 27 45.063 10  2003 260 11 11 45.163 
11  2003 309 12 07 27.163 11  2003 262 11 17 50.563 
12  2003 330 12 11 06.875 12  2003 274 11 11 58.038 
13  2003 353 12 20 25.025 13  2003 290 11 14 39.138 
14  2003 360 12 12 55.100 14  2003 297 11 10 51.638 
15  2004 009 12 24 52.775 15  2003 302 12 09 44.463 
16  2004 016 12 45 51.650 16  2003 316 12 43 00.238 
17  2004 044 12 21 51.325 17  2003 323 12 32 26.138 
18  2004 051 12 49 00.450 18  2003 325 12 16 27.988 
19  2004 056 12 51 55.400 19  2003 332 12 05 55.800 

   20  2003 337 12 29 41.850 
   21  2003 344 12 53 03.950 
   22  2003 351 12 38 35.575 
   23  2003 358 12 32 51.250 
   24  2003 364 12 07 49.150 
   25  2004 014 12 14 30.025 
   26  2004 021 12 39 00.825 
   27  2004 028 12 15 16.100 
   28  2004 035 12 50 02.300 
   29  2004 042 12 14 55.925 
   30  2004 049 12 06 22.800 
   31  2004 058 12 52 57.425 

 
 
Table 3.3 provides a list of Ground Truth events for the Zapoljarni mines in a time 

period distinct from that for the events listed in Table 3.2. We intend first to construct 
ensemble covariance matrices  and  (c.f. Equation 2.10) for the two mines ZP1 
and ZP2 measured from initial P-arrivals for the events listed in Table 3.2. From the two 
covariance matrices we calculate the corresponding empirical steering vectors,  and  
and . For each P-arrival from the events listed in Table 3.3, we measure the 
covariance matrix  and calculate two corresponding empirical matched field statistics: 
 

   (3.1) 
 
and 
 

   (3.2) 
 
(c.f. Equation 2.11). The aim is to investigate how successfully the events in Table 3.3 
are classified based upon the size of the two values  and . 
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Figure 3.5:   versus  for events attributed to the ZP1 mine (red symbols) 
and the ZP2 mine (blue symbols) in the period 2003-2004 (see Table 3.3). The grey zone 
along the diagonal indicates a region where the difference between  and  
is not great, indicating a less certain classification. The estimates are made in the broad 
frequency band 2-5 Hz to 12.5 Hz. Only the central element of ARCES, the C-ring and 
D-ring are used. 
 
 

The values of  and  for the 2003 and 2004 Zapoljarni events are 
plotted in Figure 3.5 where the colour of the symbol indicates the mine the event is 
attributed to from the Ground Truth information. There is a clear separation in the 

 parameter space between the two populations with all but two of 

the events identified as coming from the same source mine as the Ground Truth 
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attribution. There are however many symbols occupying the grey-shaded region 
suggesting that several of the classifications are associated with significant uncertainty. 
 

 
 
Figure 3.6:  Similarity metrics (c.f. Equation 3.3) between pairs of events from the ZP1 
and ZP2 calibration event populations in the time-period 2001-2002 (see Table 3.2). 

 
 
We examine the two populations of events from which the empirical steering vectors 

were calculated (Table 3.2). For each event i, we calculate the covariance matrix  
for frequency band  and its fully normalized principal eigenvector . Over the 

frequency bands, the similarity metric 
 
   (3.3) 

 
between events  and  measures the projection of one phase’s matching field onto the 
other and is normalized to range between 0 (no projection) and 1 (identical matching 
fields). The  are displayed for each event pair from the ZP1 and ZP2 calibration event 
populations in Figure 3.6. 
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Figure 3.7:  Ward linkage dendrograms for ZP1 and ZP2 calibration events as indicated. 
For the set of ZP2 events, two clusters are defined based upon a similarity threshold of 
0.7. 
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The population of ZP1 calibration events (left panel, Figure 3.6) is considerably more 
homogeneous than the population of ZP2 calibration events (right panel, Figure 3.6). This 
is illustrated further by calculating dendrograms for the two mines (Figure 3.7) using the 
agglomerative clustering linkage algorithm of Ward (1963). Using a similarity level of 
0.7 for defining event clusters, we find that the ZP2 calibration events can be subdivided 
into two groups. The smallest of these groups consists of only 4 events (numbers 20, 22, 
23, and 25) displayed in red in Figure 3.8. It is also worth noting that these four events all 
occur after April 2002 (see Table 3.2). 
 

 
 
Figure 3.8:  Waveforms (initial region P-wave arrivals) at the ARCES center instrument 
ARA0 sz for the 2001-2002 ZP2 calibration events listed in Table 3.2. The data are 
filtered in the passband 2.5 - 12.5 Hz, also used in the Matched-Field processing. The 
events of the split calibration datasets are shown by the black (ZP2 sub1) and the red 
(ZP2 sub2) traces, respectively. 
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We repeat the classification procedure displayed in Figure 3.5 except that, instead of 
a matching statistic for a single ZP2 empirical steering vector, we calculate a matched 
field statistic for two different steering vectors - one from each of the two clusters 
demonstrated - and take the ZP2 classifier as the maximum of the two values. The 
outcome is displayed in Figure 3.9. The separation between the populations of ZP1 and 
ZP2 events is far better than that displayed for the single ZP2 calibration (Figure 3.5). It 
is clear that the creation of an ensemble covariance matrix and subsequent empirical 
steering vector for the entire population of ZP2 events has actually degraded the 
classification performance. A far better performance is achieved when the ZP2 
calibration events are separated on the basis of cluster analysis prior to the formation of 
covariance matrices and empirical steering vectors. 
 

 
 
Figure 3.9:  Classification of 2003 and 2004 events from ZP1 and ZP2 mines using 
empirical matched field processing. The procedure followed is the same as for Figure 3.5 
except that the ZP2 matched field statistic, , is replaced by the maximum of the 
two values  and  ). 
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Summary 

We have demonstrated the ability of empirical matched field processing to distinguish 
between two different sources of mining explosions separated by a distance of 
approximately 2 km using an array station at a distance of approximately 200 km. From 
theoretical considerations of a plane wavefront assumption, the ARCES array should not 
be able to differentiate between P-arrivals from the Zapadny (ZP1) and Central (ZP2) 
mines at Zapoljarni on the Kola Peninsula. 

 
Broadband f-k analysis in fixed frequency bands does provide a quasi-distinction 

between confirmed events from the two mines, demonstrating first and foremost the 
significance of scattering in the arriving wavefront. We calculate ensemble covariance 
matrices for the two mines from confirmed calibration events over a 12 month period and 
obtain empirical steering vectors (the principal eigenvectors of the ensemble covariance 
matrices). We then attempt to classify a second set of Ground Truth events from the two 
mines, distinct from the calibration dataset, by calculating matched field statistics based 
upon the two empirical steering vectors. The resulting classification is very successful 
with only two events misclassified. It is noted however that, for many events, the correct 
mine is chosen over the incorrect mine quite marginally. 

 
Cluster analysis is performed within the sets of calibration events for both mines, by 

considering a similarity metric between the principal eigenvectors from each single-event 
covariance matrix. The resulting dendrogram identifies four events from the ZP2 mine 
which appear quite different in nature to the other 21 training events. We calculate two 
separate ensemble covariance matrices for the two subgroups of ZP2 training events and 
re-classify subsequent events according to the maximum of three different matched field 
statistics: one for the ZP1 mine and two for the ZP2 mine. This new reclassification is 
greatly improved with a far greater separation between the two populations. 
Calculating an ensemble covariance matrix is likely to reduce the variability in the 
estimates for the phase and amplitude relations for a given source region, and capture 
generic information about the source to receiver Green’s function which may evade 
observation given only a single event. However, we have demonstrated that calculating 
an ensemble covariance matrix from a group of calibration events without examining the 
associated similarity matrix can significantly reduce the matched field classification 
performance. We therefore advocate performing cluster analysis on all calibration events 
prior to calculating ensemble covariance matrices. 
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4. USING MATCHED FIELD PROCESSING AS A SOURCE 
CLASSIFIER FOR REPEATING INDUSTRIAL EVENTS:  
CASE STUDY - CENTRAL KAZAKHSTAN 

The target region of the work carried out in this contract is central Asia, with a focus 
on Kazakhstan and the surrounding region. There are four 9-element seismic arrays 
within Kazakhstan, ABKAR, BVAR, KKAR, and MKAR, each with an aperture of 
approximately 4 km. These so-called hybrid arrays are based upon the same principles as 
ARCES (concentric rings with increasing radius) but, due to the combined effect of a 
larger aperture and fewer sensors, lack the short intersite separations which enable 
ARCES and similar small aperture arrays to process high frequency regional signals 
coherently. Also in the region is the Kurchatov cross-array (20 sites, aperture ~ 20 km), 
the KNET telemetry network in Kirgizstan (10 sites, aperture ~ 250 km), and a number of 
additional three-component stations. The seismic stations in the region comprise a broad 
spectrum of apertures over which empirical matched field processing can be evaluated 
and compared with existing procedures. The region is also of interest due to the high 
volume of seismicity, both anthropogenic and natural. Figure 4.1 displays the locations of 
the four 9-element Kazakh arrays together with a summary of reported seismicity and 
locations of known mines.  
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Figure 4.1: Locations of the four arrays ABKAR, BVAR, MKAR, and KKAR in 
Kazakhstan together with an illustration of the density of seismic events from the KNDC 
bulletin from 2005-001 to 2008-269. The “event bins” are coloured according to the 
number of events which have at least one defining P-phase from one of the four arrays 
shown. A total of 54443 events are contained within the bulletin during the time-period 
specified. The black symbols indicate the locations of known mines. 
 
 

Unlike in the European Arctic, where we have received exceptional access to mining 
Ground Truth data, we have few instances of confirmed explosions at given sites. 
However, significant efforts have been made to classify sources of mining seismicity 
using waveform correlation methods in conjunction with satellite imagery (e.g. Hartse et 
al., 2008; MacCarthy et al., 2008). Figure 4.2 is taken from Hartse et al. (2008) and 
displays the locations of mines to which sets of mining blasts have been attributed. Figure 
4.3 displays a satellite picture of a mine in one of the regions identified. 
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Figure 4.2: Location estimates for three mining clusters in eastern Kazakhstan obtained 
from correlation analysis by Hartse et al. (2008) and MacCarthy et al.  (2008). Figure 
taken from Hartse et al. (2008). 
 

 
 
Figure 4.3: Application of Google Earth for the identification of candidate sites for 
clusters. This mine is in the vicinity of the location estimates for clusters 328 and 344 
(c.f. Hartse et al., 2008). 
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Figure 4.4 illustrates the location estimates from the Kazakhstan National Data Center 
(KNDC) reviewed event bulletin (http://www.kndc.kz/eng/index.php?p=0&f=data.html) which 
correspond to events which Hartse et al. (2008) attributes to the clusters labelled 310, 
328, and 344. The spread in location estimates emphasizes the need to apply additional 
processing methods such as EMFP. The waveform similarity constrains the source 
locations to be separated by no more than at most a few wavelengths at the dominant 
frequency; at most a few kilometers. The elongated uncertainty ellipses associated with 
the locations displayed in Figure 4.4 have dimensions of the order 100 km.  Gibbons et 
al. (2010) attribute part of the considerable spread in automatic event location estimates 
for industrial events in the European Arctic to the practice of measuring slowness and 
azimuth at array stations in variable frequency bands.  The same would apply to central 
Asia, although we are in addition restricted by the array geometries to processing in a 
lower frequency bands. 
 

 
 
Figure 4.4: Location estimates for events from clusters 310 (black), 328 (green), and 344 
(blue) from Hartse et al. (2008) as provided in the KNDC reviewed bulletin. Red symbols 
indicate the locations of known mines. The black, blue, and green lines give the median 
backazimuth estimates for the respective populations for the Pn phase arrivals at the 
MKAR array, whereby the estimate is made in the fixed frequency band 2.0 - 4.0 Hz. 
Clusters 310, 328, and 344 contain 65, 40, and 27 events respectively. 
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To illustrate, Figure 4.5 displays the signal from one of the industrial events classified 
by (Hartse et al., 2008) recorded on the Makanchi array (MKAR) at a distance of 
approximately 400 km. The waveform is filtered in a cascade of increasing frequency 
bands. While the secondary and Lg phases are best observed below 4 Hz, the SNR for the 
Pn phase (typically the best for parameter estimates: c.f. Figure 6 of Gibbons et al., 2010) 
is very poor below 4 Hz and increases steadily up to the cut-off frequency of the sensor. 
Figure 4.6 displays the consequences of the signal spectrum and array geometry for Pn 
slowness estimates using classical f-k analysis in two fixed frequency bands. In the upper 
row (2-4 Hz), the coherence over the array is relatively good while the SNR is poor. A 
majority of slowness estimates (top left panel) are in the correct region of slowness space, 
although the number of estimates which are not classified even qualitatively correct is 
significant. In the lower row (5-10 Hz), the SNR is high but the coherence between 
sensors is diminished, resulting in an even greater spread and poorer classification 
success. In neither frequency band is there any resolution in slowness space between Pn 
arrivals from the three different clusters. Figure 4.7 displays the geometry of MKAR 
together with the layout of ARCES for comparison. 
 

 
 
Figure 4.5: A three minute long data segment with signals from an industrial event 
recorded on the MK01 SHZ channel of the Makanchi array bandpass filtered in various 
frequency bands as indicated. 
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Figure 4.6: The left hand panels show scatter-plots of slowness vector estimates in the 
frequency bands indicated for initial Pn arrivals at Makanchi for events in clusters 310, 
328, and 344 in Hartse et al. (2008). The anticipated backazimuth for all events is close to 
340 degrees and the apparent velocity should be close to 8 km/s.  The f-k grids to the 
right display the relative beam-power as a function of the horizontal slowness for the 
arrival at MKAR at a time 2007-181:06.30.31.425 (see Figure 4.5). 
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Figure 4.7: Geometries of the Makanchi array (MKAR) in Kazakhstan and, for 
comparison, the ARCES array in Norway. While MKAR is based on the same design 
concept as ARCES (concentric rings at increasing radius, each with a greater number of 
sensors) the lack of small intersite distances means that the high frequency signals (i.e. 
those relevant to low yield explosions at regional distances) are incoherent between 
sensors. 
 
 

A similar procedure to that followed in the previous chapter was attempted to use 
empirical matched field processing to separate and classify the sources. A frequency band 
between 5.9375 and 10.0 Hz was selected, primarily to illustrate the performance of 
EMFP in a frequency band for which conventional frequency-wavenumber analysis 
demonstrably fails (c.f. Figure 4.6). Figure 4.8 displays the wideband similarity metric 
(c.f. Equation 3.3) between the empirical steering vectors for Pn arrivals at MKAR for 
each of the 40 events in cluster 328. As performed previously, a Ward dendrogram was 
constructed (Figure 4.9) and the resulting reordering (Figure 4.10) shows clear clustering 
within the 40 events. 
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Figure 4.8: Distance matrix between the principal eigenvectors from the covariance 
matrices for Pn-arrivals at MKAR for each of the 40 events in cluster 328 of Hartse et al. 
(2008). The covariance matrix is formed using a data window of 9 seconds from all short-
period vertical channels of the MKAR array, within the frequency band 5.9375 Hz to 10 
Hz.   
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Figure 4.9: Ward dendrogram for MKAR Pn-arrivals from cluster 328 for the values 
displayed in Figure 4.8. 
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Figure 4.10: Similarity matrix displayed in Figure 4.8 with elements reordered according 
to the clustering displayed in the dendrogram in Figure 4.9. 
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Figure 4.11: Reordered matched field similarity matrix over all three clusters. 
 
 

The distance metric between empirical steering vectors was calculated for the entire 
set of MKAR Pn arrivals from clusters 310, 328, and 344, and the subsequent cluster 
analysis performed. The reordered similarity matrix is displayed in Figure 4.11, from 
which it is clear that the empirical steering vectors from arrivals from each of the three 
primary clusters have a far greater projection onto empirical steering vectors from the 
same cluster than onto empirical steering vectors from the other clusters. As in the 
previous chapter, an ensemble covariance matrix was calculated from each of the three 
main mining clusters together with the corresponding empirical steering vectors. For each 
Pn observation, three matched field statistics were calculated: one each of clusters 310, 
328, and 344 (upper row of Figure 4.12). The symbols representing the statistics from 
each of the three clusters appear to be well separated in this 3-dimensional parameter 
space. The procedure described at the end of Chapter 2 was followed for the calculation 
of rank-2 matched field statistics for each of the three clusters. The rank-2 statistics 
(displayed in the lower row of Figure 4.12) are arguably better separated than the rank-1 
statistics with each of the clusters more compact in space. 
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The improvement in the visual separation between clusters from Figure 4.6 (lower 
left panel) to Figure 4.12 is remarkable given that they use essentially the same data 
segments, from the same sensors, and in the same frequency band.  The difference is that 
the separation in Figure 4.6 relies on the match between an observed and a theoretical 
wavefield, and the separation in Figure 4.12 is relies on the match between an observed 
wavefield and previous observations of well-characterized wavefields. 
 

 
 
Figure 4.12: Separation using EMPF between events from clusters 310, 328, and 
344 using both Rank-1 and Rank-2 matched field statistics. 
 
 

It is noted that despite the indicated subgroups of events within cluster 328, only 
single sets of empirical steering vectors were calculated for each of the three major 
clusters. The similarity metric between the major clusters indicated in Figure 4.11 
indicates that the separation between the three primary clusters is so great that a reduction 
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in performance due to the formation of ensemble covariance matrices from relatively 
diverse sources is not a problem. It appears that the examination of the rank-2 detection 
statistic appears to mitigate the spread of the populations in the 3-dimensional parameter 
space. If a more source-specific classification were necessary, a breakdown of the 
training events into sub-clusters as was performed in the previous chapter may pay 
dividends. 
 
 

Summary 

We have demonstrated that the empirical matched field source classification has 
comfortably distinguished signals from mining blasts in three different source regions in 
Kazakhstan using only the Pn arrivals at the MKAR array at a distance of approximately 
400 km. The calculations were performed in a frequency band from 6 to 10 Hz, in which 
it has been demonstrated that classical f-k analysis on MKAR is unable even to provide 
qualitatively reliable estimates of the slowness vector. Performing cluster analysis on the 
empirical steering vectors from individual events provides a good indication of how 
reliable source identification is likely to be. 
 

We have examined both rank-1 and rank-2 matched field statistics and it appears that 
the classification is improved for the rank-2 case. This provides a possible alternative 
strategy for classification of groups containing inherent dissimilarities, possibly as a 
result of an expanded source region. In the previous chapter, a successful characterization 
of a source region with a heterogeneous set of calibration events was only possible by 
performing cluster analysis on the individual set of calibration events and splitting these 
events into distinct groups.  We have demonstrated that the separation between different 
source regions is also improved by considering covariance matrices calculated from all 
calibration events and examining higher order matched field statistics. This may remove 
the need to split the calibration events a priori since the different wavefield characteristics 
will be represented in different eigenvectors of the covariance matrix. 
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5. MATCHED FIELD PROCESSING AS A TOOL FOR DETECTION 

One of the most appealing features of empirical matched field processing (EMFP) is 
the expectation that, due to the narrow-band nature, the method will be far less sensitive 
to differences in the source-time function. Ripple-firing practices can cause significant 
problems for the classical correlation detectors (e.g. Gibbons & Ringdal, 2006) due to 
significant waveform variation from event to event. The spectral covariance matrices 
encode the spatial structure of the wavefield over the receiver aperture far more than the 
temporal structure and work presented in the previous sections has demonstrated that 
EMFP can provide excellent source classification for ripple-fired events, despite 
significant waveform diversity (see also Harris & Kværna, 2010). 
 

Figure 5.1 displays the locations of two primary seismic arrays in central Asia in 
relation to a source of repeating seismic events. Both arrays consist of 9 sites over an 
aperture of ~ 5 km over which coherent processing of higher frequencies (> 4 Hz) 
demonstrably fails (c.f. Figure 4.6). The wavefield characteristics vary greatly between 
the two arrays. The only impulsive arrival at ZALV is Pn; Lg is highly emergent and 
there is no clear Sn onset. At MKAR, there are clear Pn and Pg onsets and high amplitude 
Lg. Pn is a very high frequency arrival and is often estimated poorly due to a low SNR 
below 4 Hz. The Pg arrival has far more low frequency energy. An event on October 28, 
2009, was confirmed to have occurred at the mine and an extensive search using multiple 
correlation detectors on all available arrays, followed by careful analysis of the signals at 
the closest station (KURK), provided a large database of events which were likely to 
have come from that source. For each event, a spectral covariance matrix and 
corresponding eigenvectors were evaluated for analyst-picked Pn arrivals at both the 
MKAR and ZALV arrays. We chose a window length of 121 samples (3.0 seconds) and 
19 discrete frequencies from 2.0 to 8.0 Hz. The multitaper (Thomson, 1982) software 
described by Prieto et al. (2009) was used to construct the covariance matrices (see 
Appendix A). An ensemble covariance matrix was also constructed for each of the two 
arrays, taking care to account properly for missing or corrupted data channels for a 
number of events. 
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Figure 5.1: Location of the Kara Zhyra mine in Eastern Kazakhstan with respect to the 
MKAR and ZALV arrays (at 445 km and 600 km respectively). Waveforms from the 
vertical component broadband sensor at both arrays are shown at the times and in the 
frequency bands indicated. 
 
 

For a number of candidate arrivals, the matched field statistic (an arithmetic mean 
across all frequency bands) was evaluated against steering vectors as displayed in Figure 
5.2. The theoretical plane-wave, single observation empirical, and ensemble matched 
field statistics are as given in equations 2.9, 2.12, and 2.11 respectively. The upper panels 
of Figure 5.2 show the deployment in slowness space of the theoretical plane-wave 
steering vectors. Empirical steering vectors were only calculated for phase arrivals for 
which a clear onset could be picked by an analyst and the calculations displayed in Figure 
5.2 are limited to events where the SNR on the array beam exceeds 20. In almost all 
cases, the matched field statistics for the empirical steering vectors (red/black) is 
considerably higher than that for the theoretical steering vectors (blue). The improvement 
is greater for MKAR than for ZALV, probably due to the high frequency content of the 
MKAR signals (for which the theoretical steering vectors perform poorly). The plot of 
matched field statistic as a function of slowness indicates local maxima close to the 
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theoretical slowness vector; more clearly defined for ZALV than for MKAR over this 
frequency range. 
 

 
 
Figure 5.2: Matched field statistics for the specified times at ZALV and MKAR for Pn 
arrivals from an event assumed to originate close to the Kara Zhyra mine in Eastern 
Kazakhstan. Both theoretical plane wave steering vectors (blue), single observation 
empirical matched field steering vectors (red) and ensemble matched steering vectors 
(black) are used. The bars in the lower panels are rearranged in descending order of the 
matched field statistic. 
 
 

The slowness plots also suggest a strategy for the calculation of f-k spectra in routine 
processing. A matched field statistic should be evaluated over a dense slowness grid (as 
is typically done today) but, in addition, a number of empirical steering vectors for 
repeatedly observed arrivals should augment the slowness space, labeled with the 
corresponding theoretical slowness vectors. Should an empirical steering vector attain a 
higher matched field statistic than any of the theoretical steering vectors, the 
corresponding theoretical slowness vector should be returned. Given a suitably dense 
coverage of empirical slowness vectors, this could remove the need to apply Slowness 
and Azimuth Station Corrections (SASCs).  A final observation from Figure 5.2 is that 
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essentially every one of the single- observation empirical matched field steering vectors 
performs significantly better than the best theoretical steering vector. EMFP may 
therefore be expected to perform well even for situations in which only a single 
observation is available.  The evaluation of the matched field statistic for a given steering 
vector against the current covariance matrix is very rapid and it could be envisaged that 
huge numbers of steering vectors could be processed for each covariance matrix with- out 
the computational demands becoming prohibitive. The ensemble covariance matrices in 
these cases do perform well and it may be advisable to use empirical steering vectors 
both from ensemble estimates and from single observations. 
 

All of the matched field statistics presented so far have been evaluated over data 
segments carefully selected by an analyst. How sensitive are the results to the positioning 
of the data window? The three-second window chosen here is typical of the classical f-k 
analysis performed on small and medium aperture arrays and, given the relative 
transience of seismic phases, a significant increase in the data window length is probably 
not advisable. The uncertainties associated with arrival time estimates can be significant, 
especially for low SNR signals, and the method may be of limited applicability in 
automated processes if the matched field statistic varies greatly within the uncertainty of 
the phase arrival estimate.  
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Figure 5.3: Matched field statistics as a function of data-window positioning for two 
events from the Kara Zhyra mine recorded at Makanchi. The x-axis of the grid indicates 
the starting time of the 3 second (121 sample) long data-window from which the (single 
event, single phase) empirical steering vector is calculated.  The colors of the pixels for 
that value of x indicate the values of the matched field statistic evaluated against a data-
window starting at the time indicated by the y coordinate. For example, the intersection 
of the dashed red lines indicates the value of the rank-1 statistic obtained using the 
spectral covariance matrix evaluated for the data segment covered by the vertical solid 
red bar against an empirical steering vector calculated from the template indicated by the 
horizontal red bar. 
 
 

Figure 5.3 displays the matched field statistic as a function both of time of the 
template window (for the calculation of the empirical steering vector) and of the time of 
the data window. The transience of the statistic is evident and it is clear that there is a 
modulation as the statistic is evaluated over time-intervals with different degrees of 
coherence. (For example, the matched field statistic for the Pg phase of event 2 using the 
Pn empirical steering vector for event 1 is considerably 5 higher than for the coda 
immediately following the Pn arrival.) However, it appears that the matched field statistic 
is significantly greater than the background level for a duration long enough to cover the 
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uncertainty surrounding the arrival time estimate. The variability will clearly change from 
arrival to arrival, and from array to array, although the results displayed here appear to be 
fairly representative of a wide range of phases observed. The time dependence indicated 
in Figure 5.3 suggests that, for a continuous evaluation of a matched field statistic against 
a set of reference steering vectors, an evaluation of the data covariance matrix every 
second is probably sufficient. A more frequent evaluation of the spectral covariance 
matrix is likely to lead to a significantly higher computational expense without a 
significant gain in performance. This provides for the possibility of a single-phase 
matched field detector to find the occurrences of incoming wavefields resembling a 
previously observed template. This is analogous to the correlation detectors except for 
that we are seeking primarily a spatial wavefield structure over the array and not 
necessarily a temporal wavefield structure. 
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Figure 5.4: Matched field statistics as a function of time of day from empirical steering 
vectors from a single event at the Kara Zhyra mine for the array configurations indicated 
from January 1, 2009, to December 31, 2009. Each point indicates the maximum value 
obtained in a 20 minute segment (and so multiple events within the same 20 minute 
window would not be resolved). Values greater than 0.35 are highlighted. The covariance 
matrices for the two-array matched field calculation in the lowermost panel are calculated 
using a 20.0 second delay imposed on the ZALV waveforms relative to the MKAR 
waveforms.   
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Figure 5.4 shows the results of using the single-phase EMFP detector to identify Pn 
arrivals from Kara Zhyra events, at both MKAR, ZALV, and a virtual network consisting 
of the two arrays with the ZALV waveforms moved forward by 20 seconds to 
compensate for the longer travel-time. The matched field statistic was evaluated every 
second for the calendar year 2009, for the three array configurations, using the empirical 
steering vectors from the covariance matrices for the October 28, 2009, event. Every 
point shown in the plot is the maximum value obtained within predefined 20 minute 
segments. From the time-of-day plots, it does not appear that many triggers have 
occurred outside of two very narrow time-zones in the day, indicating that these matched 
field statistics may constitute a detector with a low false alarm rate. The virtual wide-
aperture array works quite well (despite capturing slightly fewer events than the single 
array processes). The distribution of points for the two-array system follows very closely 
the results of the ZALV array which may indicate that, at some times, the covariance 
matrix is likely to be dominated by the contributions from channel pairs within one of the 
arrays. It is also possible that the single arrays cannot resolve between events from distant 
extremes of an extended source region since the relative phase-shifts are very small, 
whereas the two-array system is sensitive to far smaller changes of source region. This is 
identical to what is observed using the multi-channel waveform correlation detector. On a 
small-aperture array, detections of some significance can occur when an unrelated 
wavefront approaches from a similar direction to the master event. On a large array or 
network, it is almost impossible to get a trigger at all sites simultaneously and the 
detector responds to events from a much smaller source region. 
 

 Summary 

We have demonstrated that, while it is beneficial to create ensemble covariance 
matrices for characterizing the spatial structure over a sensor array of signals from a 
given source region, empirical steering vectors generated from single observation may 
provide a good matching field representation. In particular, for the example of Pn arrivals 
at MKAR and ZALV from events at the Kara Zhyra mine in Kazakhstan, every one of 
the single event empirical steering vectors outperformed the best theoretical steering 
vector.   
 

We note that this form of matched field processing, where the spectral covariance 
matrix is evaluated using the multitaper method on a short data segment, is simply an 
extension of classical f-k analysis and we advocate the inclusion of empirical steering 
vectors in pipeline detection recipes for all well-constrained seismic sources. This would 
eliminate the need to apply SASCs (Slowness and Azimuth Station Corrections) and 
improve the performance of phase association algorithms due to the improved parameter 
estimates provided.   
 

We have assessed the applicability of single phase matched field processing as a 
source-specific detector. Firstly, we have examined the sensitivity of the matched field 
statistic to the precise definition of the data-window. We found that, for a 3 second long 
data segment, evaluation of the spatial covariance matrix every second is sufficient for 
calculating a representative matched field statistic trace.  We performed a search on data 
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from the MKAR and ZALV arrays over one calendar year for events at the Kara Zhyra 
mine using only a single event Pn phase as a template. Due to the time-of-day of the 
detections made, we assume the false alarm rate to be quite low. A virtual wide-aperture 
network comprising both MKAR and ZALV, with time-shifts applied to compensate for 
differences in travel-time, performs reasonably well but misses a number of events that 
are detected using the two arrays separately. We speculate that the increased sensor 
separation may make the detector more sensitive to the precise source location.  This is to 
say that increasing the receiver aperture has reduced the size of the source region to 
which the matched field is applicable. 
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6. IMPROVING PHASE IDENTIFICATION IN REGIONS OF 
DIFFUSE SEISMICITY 

In the previous sections, it has been demonstrated that EMFP can be used as a means 
for both classification and detection of industrial seismicity in Central Kazakhstan. This 
has been demonstrated on medium-aperture seismic arrays in frequency bands at which 
classical f-k analysis demonstrably fails. An additional aim of the current project is to 
extend the notion of matched field processing to bands of diffuse seismicity. Figure 6.1 
displays density of events in the KNDC seismic bulletin which are recorded with a good 
signal-to-noise ratio (SNR) on both of the KKAR and MKAR arrays. Events within the 
red ring displayed were selected for further investigation if the SNR for the Pn phase 
exceeded 10 at both MKAR and KKAR, and if data existed for all nine short-period 
vertical channels of both arrays. 267 events fulfilled these criteria. 

 
 

 
 
Figure 6.1: Events from the KNDC reviewed event bulletin for which a regional P-phase 
with an SNR equal to or greater than 10 was observed at both the KKAR and MKAR 
arrays. The colour indicates log10 of the number of events within each bin of radius ~ 
83km for the time period 2005 to 2008. The red circle indicates a region selected for the 
study of diffuse seismicity within Afghanistan and Tadjikistan. The radius of the search 
window is 167 km, centered on 37.2 N, 70.8 E. 
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A spectral covariance matrix was calculated for the Pn arrival at MKAR for each of 
the 267 events and a the principal eigenvector was extracted. A pairwise similarity matrix 
and corresponding Ward dendrogram was calculated and the reordered similarity matrix 
is displayed in Figure 6.2. It is clear that the set of 267 events contains a large number 
whose signals do not match the signals from any other events, although a small number 
of clusters are observed. 
 

 
 
Figure 6.2: Similarity matrix for the Pn observations at MKAR for the region of diffuse 
seismicity labelled in Figure 6.1. 
 
 

A significant number of the larger events were also found in the Reviewed Event 
Bulletin (REB) of the International Data Center (IDC) of the Comprehensive nuclear 
Test-Ban-Treaty Organization (CTBTO); these are displayed in the right hand panel of 
Figure 6.3. A comparison of the left and right panels in Figure 6.3 highlights an 
immediate problem; there is a disagreement in event locations of the order 100 km. Both 
sets of solutions have the disadvantage that the observations are predominantly to the 
North, meaning an almost direct tradeoff between event depth and latitude. The KNDC 
solutions use exclusively stations in Kazakhstan and Kirgizstan (usually only AAK is 
used) and the REB solutions have the disadvantage of not being able to exploit the 
signals on KKAR, the most sensitive of these stations for this target region. 
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Figure 6.3: Event location estimates provided in the reviewed event bulletin of the KNDC 
(left) and in the REB of the International Data Center (right) for the 267 events whose 
similarity metrics are displayed in Figure 6.2.   
 
 

It was concluded that there was significant uncertainty attached to the location 
estimates for these events (the uncertainty in the depth estimates can result in comparable 
lateral variability, particularly for small events with particularly unfavorable station 
distributions). It was decided that for any matched field study of this seismicity of KNET, 
a preliminary set of arrival times was required for each of the phases to be observed. 
None of the available bulletins contain readings for all of the KNET stations and it was 
decided to re-examine arrival times for all of the selected events for all available stations 
at regional distances, in addition to a number of IMS array stations at teleseismic 
distances. This would serve the dual purposes of creating an arrival time database for the 
generation of matched field spectral covariance matrices, and also the generation of new 
location estimates.  The new location estimates are displayed in the right hand panel of 
Figure 6.4, together with the locations from the ISC catalog to the left. 
 

From considerations of station coverage, we considered only events which were 
recorded to the south by either NIL (Nilore, Pakistan) or KBL (Kabul, Afghanistan; data 
available from IRIS since January 31, 2007). Figure 6.5 displays KBL waveforms for an 
event on February 4, 2008, with P and S arrivals clearly visible on the vertical and 
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transverse components respectively. Figure 6.6 gives an impression of how variable the 
waveforms from these events over KNET. 
 

 
 
Figure 6.4: Event location estimates provided in the ISC bulletin (left) together with new 
solutions (right) for the 267 events whose similarity metrics are displayed in Figure 6.2. 
Note that only a subset of 155 of these events were available in the ISC bulletin at the 
time this work was performed. 
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Figure 6.5: Waveforms at station KBL in Afghanistan for event 2008-035:20.12.12  
(lat 36:504 N, 70:157 E, depth ~ 200km). 
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Figure 6.6: Variability of the waveforms over KNET from the event 2008-035:20.12.12 
(lat 36:504 N, 70:157 E, depth ~ 200km). All waveforms are bandpass filtered 2-8 Hz. 
 
 

A number of events were identified whose principal eigenvectors resulted in good 
matches (Figure 6.2). Figure 6.7 displays the structure of the spectral covariance matrices 
at 2 Hz for the KKAR Pn arrival from two such events, together with the anticipated 
plane wavefront pattern. Each symbol indicates the phase difference (color) and the 
coherence (size) between the signals at two different sites on the array, and is plotted at 
coordinates indicating the vector distance between the two stations. The plane wavefront 
model appears to be reasonable although, already at 2 Hz, the coherence diminishes 
rapidly with intersite distance.   
 

At 4 Hz (Figure 6.8), the differences between the measured and theoretical covariance 
matrices are far greater. However, the measured covariance matrices from the two 
different events are remarkably similar both for 2 Hz and 4 Hz.   
 

In Figure 6.9, we evaluate a spectral covariance matrix for a third Pn arrival at KKAR 
and compare the matched field statistics (2-8 Hz band) obtained for a deployment of 
theoretical steering vectors and for the empirical steering vectors from the November 18, 
2005, and February 4, 2008, events. As for the industrial Kara Zhyra events in the 
previous section, the empirical steering vectors provide a stronger match with the new 
event than any of the theoretical slowness vectors (Figure 6.9). We have so far only 
considered the wide band matched field statistics, where we have summed incoherently 
across all of the narrow frequency bands. Figure 6.10 displays the matched field statistics 
for the theoretical and empirical steering vectors as a function of horizontal slowness for 
a number of frequency bands as indicated. We note first how the backazimuth and 
velocity inferred from f-k analysis differs from 2 to 3 Hz. At 2 Hz, the maxima in 
slowness space coincides almost with the empirical slowness vector, whereas at 3 Hz, a 
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slightly different backazimuth and a far higher apparent velocity are inferred. In both 
cases, the match with the best empirical steering vector is higher than the maximum of 
the theoretical slowness vectors. As the frequency increases, the improvement of the 
empirical steering vectors over the theoretical steering vectors increases (see Figure 
6.11). For some frequencies, the performance of one of the empirical steering vectors is 
poorer than a number of theoretical steering vectors. The reason for this is not clear; it 
may be an SNR issue or it may simply indicate a different source location or mechanism. 
If it is for the latter reason, it is somewhat surprising that the performance of this 
particular vector improves again at even higher frequencies. 

 
Similar results are observed for many of the clusters apparent in Figure 6.2; that 

matched field statistics evaluated using empirical steering vectors from other events 
provide a better wavefield characterization than any plane-wave steering vector. 
However, for events in Figure 6.2 which did not show significant similarity with other 
events, there was unsurprisingly no improvement over the theoretical steering vectors. 
 

 
 
Figure 6.7: KKAR Pn arrival phase and coherence co-array at 2 Hz for two similar events 
in a region of diffuse seismicity together with predicted pattern. 
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Figure 6.8: KKAR Pn arrival phase and coherence co-array at 4 Hz for two similar events 
in a region of diffuse seismicity together with predicted pattern.   
 
 

 
 
Figure 6.9: (left) Matched field statistic for theoretical (circles) and empirical (square) 
steering vectors on the KKAR array in the 2-8 Hz frequency band, plotted as a function 
of slowness vector (the slowness vector for the empirical matched field statistics is the 
theoretical one). The data covariance matrix is evaluated at a time 2008-249:04.59.26.155 
and two empirical steering vectors are evaluated at times 2005-135:00.31.03.025 and 
2006-014:09.00.25.475. The colour of the square indicates the maximum of the matched 
field statistics from the two empirical steering vectors. (right) 50 greatest values of the 
matched field statistic arranged in descending order with empirical and theoretical values 
colored red and blue respectively. 
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Figure 6.10: Matched field statistic for theoretical (circles) and empirical (square) 
steering vectors on the KKAR array in narrow frequency bands as indicated.  The data 
covariance matrix is evaluated at a time 2008-249:04.59.26.155 and two empirical 
steering vectors are evaluated at times 2005-135:00.31.03.025 and 2006-
014:09.00.25.475. The color of the square indicates the maximum of the matched field 
statistics from the two empirical steering vectors. 
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Figure 6.11: Matched field statistics from theoretical (blue) and empirical (red) steering 
vectors in narrow frequency bands as indicated arranged in descending order. All 
parameters are as in Figure 6.10.   
 

Summary 

We selected a region to the south of Kazakhstan containing significant natural (or 
diffuse) seismicity. The events were initially selected from the reviewed event bulletin of 
the Kazakhstan National Data Center, although subsequent investigation showed these 
solutions to be significantly different to those in the IDC Reviewed Event Bulletin and in 
the ISC catalog. A number of events were selected and relocated using manual picks 
from all openly available data. Spectral covariance matrices were calculated for KKAR 
Pn arrivals for the selected events and a number of clusters emerged. For clustering 
events, we have examined the form of the covariance matrices and found great similarity 
between some events and demonstrated that empirical steering vectors can provide better 
characterization than theoretical steering vectors, in particular at higher frequencies 
(where the best SNR is likely to be for lower magnitude events). 
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Due to the very poor constraints on the locations of these events, questions regarding 
the spatial footprint of the empirical matched field calibrations cannot be answered. 
Addressing these questions requires high-quality observations at far closer stations than 
those available to us for this case study. 
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7. EXAMINING AN AFTERSHOCK SEQUENCE USING 
EMPIRICAL MATCHED FIELD PROCESSING 

A form of diffuse seismicity which it is necessary to characterize reliably, completely, 
and rapidly is seismicity in the immediate aftermath of a large earthquake.  Many 
thousands of events can occur shortly after, and close to the source of, a large earthquake 
and can overwhelm data processing and analyst resources for a long time. Figure 7.1 
shows the location of the M=7.4 October 8, 2005, Kashmir event relative to the 3-
component station NIL, the medium aperture array KKAR, and the KNET network. 
Figure 7.2 displays the first 20 hours of the Kashmir event sequence recorded on the 
instrument KK01 of the KKAR array. 
 

 
 
Figure 7.1: Location of the M=7.4 October 8, 2005, Kashmir event mainshock (large red 
circle) with respect to KKAR, KNET, and the NIL 3-C station. Additional seismic events 
locations of events within the ISC bulletin that fall within 300 km of the epicenter of the 
main shock between October 8, 2005, and December 31, 2005. The white symbol gives 
the ISC location of an M 5 aftershock with an origin time of approximately 2005-
281:05.34.50. 
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The vast number of arrivals at all stations in a network challenge traditional 
association algorithms, with many incorrect associations filling the automatic bulletins 
and many true events being missed. An ideal solution would be to extract waveforms 
from the master event and perform a correlation operation and simply pick out 
aftershocks from the peaks in the matched filter detection statistic. Unfortunately, this 
procedure performs very poorly for very large events given the far greater dimensions of 
the source region, very different spectral composition of mainshock and aftershocks, and 
differing source mechanisms. Setting up correlation detectors using the signals of 
aftershocks which are well-separated from other events can frequently identify a number 
of events within a very limited footprint of the selected master event. However, due to the 
extended source regions that apply, only a very small proportion of the seismicity is 
likely to be covered using a single template. Multiple templates are required (correlation 
and subspace) and autonomously administering their deployment and interpretation in 
real-time is a great challenge. 
 
 

 
 
Figure 7.2: Simulated helicorder plot of the KK01 short period vertical sensor on October 
8, 2005. 
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Figure 7.3 displays a 30 minute segment of KKAR data (trace 1 from top) 
surrounding one aftershock (indicated by an arrow) together with a number of waveform 
attributes which could be used to identify events in the sequence. Trace 2 from the top 
shows the relative beam power from a continuous f-k analysis in the 2-4 Hz frequency 
band. A high beam power will occur whenever a coherent wavefront passes over the 
array and so we need additional criteria to determine whether or not the detection 
corresponds to a specified arrival from the source region of interest. In practice, this will 
mean defining a region of slowness space within which the maximum beam power is to 
be found. As displayed in Figure 6.10, the optimal slowness vector can vary in slowness 
space as a function of frequency and become poorly defined due to incoherence at higher 
frequencies. Peaks corresponding to anticipated Pn arrivals from the aftershock region are 
colored red. 
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Figure 7.3: KK01 waveform (trace 1) together with 2-4 Hz f-k beam power (trace 2: red 
indicates slowness vector consistent with Pn phase from source region), scalar matched 
field statistic from the 2005-281:05.34.50 Pn arrival (trace 3), the weighted vector 
gradient (trace 4, c.f. Gibbons et al., 2008), and the correlation coefficient beam from a 
template from the 2005-281:05.34.50 event (trace 5). 
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Trace 3 from the top in Figure 7.3 displays the value of the matched field statistic 

where the empirical steering vector is generated from a single covariance matrix at a time 
2005-281:05.37.06.7. This scalar peaks at the onset of each phase before trailing off into 
the coda. A transformation of the vector of narrow-band matched field statistics to a 
single "scaled gradient" scalar function (as described by Gibbons et al., 2008) was 
calculated in order to identify significant peaks. This function is displayed in Trace 4 
from the top. In the lowest trace, the continuous correlation coefficient from the full 
waveform of this aftershock is displayed. It is clear that many more events are identified 
by the single-phase matched field statistic than from the correlation detector. Figure 7.4 
shows a corresponding plot from a window containing the signal from the mainshock and 
the start of the aftershock sequence. 
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Figure 7.4: As for Figure 7.3 except that we consider the time-interval surrounding the 
main shock. 
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The KKAR Pn matched field statistic from the 2005-281:05.37.06.7 signal was 
calculated on continuous data for October 8, 2005, and the 20 maximum values 
throughout the day were examined and an ensemble covariance matrix from these events 
was generated. Figure 7.5 shows the rank-1, rank-2, and rank-3 matched field statistic 
traces for a short window surrounding a later Pn arrival.  The values for the higher rank 
detection statistics are greater at the signal onset, but it is clear that the background level 
also increases significantly. This may be a result of the definition of ensemble covariance 
matrix which, designed to contain quite similar signals, may not contain significant 
structure in the higher order eigenvectors. Constructing higher rank matched field 
statistics from the resulting steering matrix may simply allow for a better match with 
noise segments. The effectiveness and performance of higher-rank matched field 
statistics and multiple rank-1 matched field statistics requires a more extensive 
investigation than can be provided here. 

 
 

 
 
Figure 7.5: Continuous traces of matched field statistics with ranks 1, 2, and 3 where the 
ensemble covariance matrix is generated from the 20 best matches with the data segment 
starting 2005-281:05.37.06.7. 
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Figure 7.6: Waveforms over KNET (filtered) 2.0-8.0 Hz from an aftershock of the 
October 8, 2005, Kashmir event. (left) a four minute segment starting at a time 2005-
281:05.27.03 and (right) a 30 second segment surrounding the Pn arrival illustrating the 
time delays across the network. 
 
 

Figure 7.6 displays the waveforms from one aftershock over KNET showing how 
staggering of the waveforms is necessary prior to the calculation of a covariance matrix. 
On any 3-component station, it is possible to construct a 3 by 3 covariance matrix 
between the different sensors. (The relative sizes of the eigenvalues indicate the degree of 
polarization and the principal eigenvector describes the predominant particle motion.) It 
is therefore possible to calculate a 3-C matched field statistic for each station (see Figure 
7.7). Trace 2 from the top displays the 3-C statistic for the NIL station and Trace 4 from 
the top displays the noisier trace for the more distant AAK station within KNET, with all 
traces being approximately aligned to account for the different travel-times from the 
source. The third trace from the top displays the (incoherent) sum of the 3-C matched 
field detection statistics stacked over all the stations of KNET with the appropriate time-
delays (c.f. Figure 7.6). This incoherent matched field statistic beam over KNET displays 
a remarkably low variability of the background level and many more peaks can be 
identified on the beam than on the single channel AAK trace. The close correspondence 
between the peaks on the KNET beam and the NIL trace indicate that these arrivals are 
from events which are not located very far from the location of the master event. 
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Figure 7.7: 3-component matched field detection statistic traces for the NIL and AAK 
stations, together with an (incoherent) beam of the corresponding traces across KNET. 
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Figure 7.8 displays these two traces together with a fully coherent matched field 
detection statistic for KNET. In the left of the two red boxes are three peaks on the fully 
coherent trace of which only the first is significant on the incoherent stack. The second 
peak on trace 5 is not recorded significantly on trace 4, but is present on the NIL trace, 
indicating that this is likely to be a genuine detection of a weak event. In the right of the 
two red boxes, a far greater peak is observed on the incoherent matched field statistic 
beam than on the coherent detection statistic. This is presumably an event which is 
somewhat further away from the source region which has led to a degradation of the 
coherent matched field statistic over the large network. It is however well detected by the 
partially coherent procedure and this detection could be used to generate a new coherent 
template to provide a more sensitive detector in the immediate vicinity of the new event. 
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Figure 7.8: Comparison of coherent and incoherent matched field detection statistic 
beams for KNET for an aftershock of the October 8, 2005, Kashmir earthquake together 
with reference waveform traces from AAK (a station in KNET) and NIL (approximately 
100 km from the epicenter). 
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Summary 

Considering the extensive aftershock of the M=7.4 October 8, 2005, Kashmir 
earthquake, we have demonstrated that using a single Pn arrival on the KKAR array 
provides a detection statistic for identifying events from that source region which appears 
to outperform both the correlation detector and the standard pipeline f-k analysis. The f-k 
analysis is compromised by the limited frequency range over which coherent processing 
is possible and by the variability of the slowness vector as a function of frequency. The 
correlation detector is compromised by the very small geographic footprint of the target 
region and of the fact that a long wavetrain is required, causing possible interference with 
events closely spaced in time. 
 

The empirical matched field processing method acts on a short data segment and yet 
is calibrated precisely to the spatial structure of the wavefield over the array aperture. 
 

Monitoring the same sequence over the large aperture KNET network requires time-
shifts to be applied because of the significant differences in travel-times to the different 
sensors. The fully coherent matched field statistic over the network is specific to a 
smaller source region than on the medium aperture KKAR array since differences 
between hypocenters will lead to greater phase shifts over the sensor aperture. However, 
a partially coherent procedure, whereby a 3-component matched field statistic is 
evaluated for each station of the network and then summed using appropriate time-
delays, appears to provide a very robust detection statistic which covers a much broader 
geographical footprint. This suggests an operational pipeline for classifying the 
aftershock sequence whereby the partially coherent procedure identities template events 
from distinct clusters, and numerous fully coherent procedures form more sensitive but 
more source-specific classifiers for each target location. 
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8. CONCLUSIONS 

The overall objective of this three-year study has been to examine the limits of 
coherent processing on seismic sensor configurations of different apertures using 
empirical matched field processing (EMFP). EMFP is a narrowband technique which 
makes the detection and classification of seismic phases relatively insensitive to 
differences in source-time function.  The technique is empirical, exploiting observations 
of historical events to calibrate the amplitude and phase structure of an incident wavefield 
over a given sensor configuration for particular repeating sources.  Its applicability to 
wider sensor apertures than can process signals using the classical plane-wavefront 
formulation stems from the fact that matching with the incoming wavefield is done using 
an empirical description of the anticipated wavefield and not a theoretical one. 

 
 
We have conducted a number of case-studies within the current contract: 
 
 
Classification of quarry explosions on the Kola Peninsula 
 

We have demonstrated the ability to distinguish between events from two mines on 
the Kola Peninsula using only the ARCES array at a distance of approximately 200 km. 
The mines are more closely spaced than can theoretically be resolved using the array.  
This study highlighted the importance of examining the similarity of the single-event 
empirical steering vectors prior to the construction of ensemble covariance matrices. 
Empirical steering vectors calculated from ensemble covariance matrices constructed 
from events that are too dissimilar will lead to a reduction in performance. 
 
Classification of mining explosions in central Kazakhstan 
 

EMFP also resolved a number of mining clusters in central Kazakhstan using only Pn 
arrivals on the MKAR array at a distance of approximately 400 km. MKAR is sparser 
than ARCES and it can be demonstrated that above 4 Hz (where the SNR is optimal) 
coherent f-k analysis rarely results in qualitatively correct slowness estimates.  Matched 
field processing in the 6-10 Hz frequency band provided an excellent classification of the 
sources.  We illustrate the fact that use of higher order matched field statistics can 
improve separation between clusters in cases where there is considerable variation within 
one or more of the clusters. 
 
Events at the Kara Zhyra mine 
 

We developed a routine for calculating covariance matrices on isolated short data 
segments using the multitaper method.  We have demonstrated that, while it is often 
desirable to construct empirical steering vectors from ensemble covariance matrices 
calculated from multiple events, single-event calibrations frequently perform well making 
EMFP applicable to sites from which only a single event has been observed.  We have 
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demonstrated that single-phase EMFP can constitute a working source-specific detector 
with a low false alarm rate. 
 
Application of EMFP to diffuse seismicity 
 

We identified a region in central Asia with diffuse seismicity and calculated empirical 
steering vectors from Pn arrivals at the MKAR array. Cluster analysis on the resulting 
similarity matrix indicated that many events resulted in a similar wavefield over MKAR 
which differed significantly from the theoretical plane wavefront.  It was demonstrated 
that the improvement that EMFP provides in wavefield characterization over the 
theoretical wavefield description became greater as the frequency increased.  The small 
number of events identified in each cluster, together with the significant location 
uncertainty, precluded the possibility of constructing covariance matrices from large 
ensembles of events from a broad source region, from which higher order matched field 
statistics could be calculated.  We advocate investigating this question further in a region 
of diffuse seismicity for which event locations are better constrained. 
 
Application of EMFP to an aftershock sequence 
 

We considered the extensive aftershock sequence to the M=7.4 October 8, 2005, 
Kashmir earthquake and demonstrated that an empirical steering vector calculated from a 
Pn arrival at the KKAR array from a single aftershock provided a characterization of the 
sequence which appeared to perform favorably compared with classical continuous f-k 
processing and full waveform correlation.  As the receiver aperture increases, we 
anticipate the source region over which the matched field calibration is specific to 
decrease.  A single-event matched field detector on, e.g. KNET, is therefore likely to 
detect events over a much smaller source region than, for example, KKAR.  However, a 
partially coherent system where the 3-component matched field statistics are beamformed 
over the stations of KNET appears to form a very robust detector for larger magnitude 
events from a broader source region. This opens the possibility for a matched field 
characterization of the aftershock sequence using the partially coherent procedure for 
identifying master events, and the fully coherent procedure for detecting smaller events 
close to the master events.   
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APPENDIX A: CALCULATING SPECTRAL COVARIANCE 
MATRICES USING THE MULTITAPER METHOD 

Harris & Kværna (2010) provide a detailed description of a procedure for obtaining a 
narrow-band representation of an observed wavefield from which the covariance matrices 
can be obtained. The clustering and classification examples in Chapters 3 and 4 use this 
method exclusively to calculate the spectral covariance matrices. 

 
Seismic signals are transient and it may be desirable to estimate the spectral 

covariance matrix over a very short and precisely defined time-window. There may be a 
very limited number of samples over which signal coherence between two sensors is 
observed, or we may want to calculate a spatial covariance matrix for one phase while 
avoiding a different phase arriving shortly before or after.  Another motivation for 
wanting to examine the spatial covariance matrix over a precisely defined set of samples 
is to be able to provide a direct comparison between empirical matched field estimates 
and existing classical f-k analysis estimates on identical waveform segments. 

 
The problem of how to estimate the spectrum of a time-limited signal is a nontrivial 

issue (see for example Gubbins, 2004). The sampling interval, ∆t, limits the maximum 
meaningful frequency to the Nyquist frequency, fN = 1/(2∆t), and the length of the time 
series, T, limits the frequency spacing, ∆f, to ∆f = 1/T . In addition, spectral estimates 
from short data segments may be heavily biased due to spectral leakage whereby the cut-
off in the time-domain forces energy at a given frequency into side lobes centered far 
from the true frequency.  Tapering the data (see for example Harris, 1978) mitigates the 
spectral leakage problem at the expense of down-weighting valuable data samples and (in 
choosing the length and shape of tapering functions) introducing an arbitrary form of 
parametrization to the estimate. Stable, unbiased, and high-resolution spectral estimates 
are provided using the multitaper methods devised by Thomson (1982) with 
computational algorithms available through sources such as the commercial platform 
MATLAB and the published source code of Lees & Park (1995). 

 
The freely available source code for multitaper spectral analysis was expanded 

significantly by Prieto et al. (2009) who also provide computational routines for the 
calculation of coherence for multivariate problems. The source code, additional 
documentation, and examples are provided at 

 
http://wwwprof.uniandes.edu.co/~gprieto/software/mwlib.html 
 

and the following piece of FORTRAN 90 code is a modification of the mt_cohe routine 
from Prieto et al. (2009) adapted to calculate the spectral covariance matrix from N-
channel data.  
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! "n_mt_cohe.f90" 
! Steven J. Gibbons Gibbons 
! Mon Oct 19 09:37:49 CEST 2009 
! 
! Extends the multitaper coherence routine (mtcohe) of 
! German Prieto to N‐channels ... 
! 
! The original routines are described in 
! "A Fortran 90 library for multitaper spectrum analysis" 
! by G. A. Prieto, R. L. Parker, and F. L. Vernon III 
! Computers and Geosciences, vol 35, 2009, pp. 1701‐1710. 
! 
! nc is the number of channels to be examined ... 
! each of the time‐series contains npts samples. 
! 
! All the time series data is input via a real*4 array rwf and 
! the locations of elements are specified by the integer array 
! of pointers iptar. 
!  
! channel ic is contained in the elements 
! 
! rwf(  iptar(ic)            ) 
! rwf(  iptar(ic) + 1        ) 
! rwf(  iptar(ic) + 2        ) 
!           :                
!           :                
! rwf(  iptar(ic) + npts ‐ 1 ) 
! 
! rwf has dimension dimrwf 
! 
! If iptar(ic).eq.‐1 then the channel is absent and we set 
! the corresponding parts of the covariance matrix to the 
! identity matrix ... 
! 
! A starting time channel ic is stored in element ic of the 
! real*8 array dtimrel ‐ these can be epoch times with respect 
! to an arbitrary common time, since only the difference 
! between the different dtimrel is referred to. 
! This means that the different time‐series can be staggered, 
! and that the starting times are accounted for in the 
! calculation of the phase differences. 
! However, the sampling time interval has to be dt for all 
! channels. 
! 
! nf, the number of frequency bins should be set to (npts/2 + 1) 
! 
! The output is in 3 real*4 arrays: 
! 
!  rcmpcov( nc*(nc+1)*nf   ) 
!  rcohe(   nc*(nc+1)*nf/2 ) 
!  rphas(   nc*(nc+1)*nf/2 ) 
! 
!  Each array contains the upper triangular part of the 
!  nc*nc matrices rcmpcov ‐ the covariance matrix (complex 
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!  numbers stored real, imag ‐ hence twice the length) 
!  rcohe ‐ the coherence ‐ see Prieto et al. (2009) and 
!  rphas (both rcohe and rphas are real) 
! 
!  The elements corresponding to frequency band 1 are stored 
!  first, followed by the elements corresponding to 
!  frequency band 2 etc. 
! 
!  Within each frequency band, ifreq, we loop 
! 
!  indexR = nc*(nc+1)/2*(ifreq‐1) 
!  indexC = nc*(nc+1)*(ifreq‐1) 
!  do i = 1, nc 
!    do j = i, nc 
!      Rij_real   = rcmpcov( indexC+1 ) 
!      Rij_imag   = rcmpcov( indexC+2 ) 
!      indexC = indexC + 2 
!      COHij      = rcohe( indexR+1 ) 
!      PHAij      = rphas( indexR+1 ) 
!      indexR = indexR + 1 
!    enddo 
!  enddo 
! 
subroutine n_mt_cohe( npts, nc, dt, dimrwf, rwf, & 
                      iptar, tbp, kspec, & 
                      nf, freqinc, rcmpcov, rcohe, & 
                      rphas, iadapt, ierr, dtimrel ) 
! 
use spectra 
! 
implicit none 
! 
!  INPUT 
! 
!       npts            integer number of points in time series 
!       nc              integer number of channels to be considered 
!       dt              real, sampling rate of time series 
!       dimrwf          integer dimension of the data array 
!       rwf(dimrwf)     real, data array 
!       iptar(nc)       integer, array of pointers 
!       tbp             real, time‐bandwidth product 
!       kspec           integer, the number of tapers to use 
!       nf              integer, number of freq points in spectrum 
!       freqinc         real, the step in frequency 
!       rcmpcov         real, the complex covariance matrix 
!                        in upper‐right storage. 
!                          dimension ( nc*(nc+1)*nf ) 
!       rcohe           real, coherence values 
!                          dimension ( nc*(nc+1)*nf/2 ) 
!       rphas           real, phase differences 
!                          dimension ( nc*(nc+1)*nf/2 ) 
!       iadapt          integer 0 ‐ adaptive, 1 ‐ constant weights 
!                       default adapt = 1 
!       ierr            integer: error flag. 0 good ‐ other numbers 



 84

!                                   less good. 
!       dtimrel         double precision, relative times of the traces 
!                          dimension ( nc ) 
!                          Only the differences between these times 
!                          are considered ... 
! 
   integer, intent(in)  :: npts, nc, dimrwf, kspec, nf, iadapt 
   integer, intent(out) :: ierr 
   integer, dimension(nc), intent(in) :: iptar 
   real(4), intent(in)                :: dt, tbp 
   real(4), intent(out)               :: freqinc 
   real(4), dimension( dimrwf         ), intent(in)  :: rwf 
   real(4), dimension( nc*(nc+1)*nf   ), intent(out) :: rcmpcov 
   real(4), dimension( nc*(nc+1)*nf/2 ), intent(out) :: rcohe 
   real(4), dimension( nc*(nc+1)*nf/2 ), intent(out) :: rphas 
   real(8), dimension( nc             ), intent(in)  :: dtimrel 
! 
! Local arrays and other variables ... 
! 
   integer, dimension(nc)               :: ipta2 
   real(4), dimension(nf)               :: f, si, wt_scale 
   real(4), dimension(nf,kspec)         :: wt_i 
   real(4), dimension(nf,kspec,nc)      :: wtarr 
   real(4), dimension(nf,nc)            :: sarr 
   real(4), dimension(npts)             :: xi 
! 
   complex(4), dimension(npts,kspec)    :: yk_i 
   complex(4), dimension(npts,kspec,nc) :: ykarr 
! 
!  Coherence freq matrices ... 
! 
   complex(4), dimension(nf,kspec)      :: dyk_i 
   complex(4), dimension(nf,kspec,nc)   :: dykarr 
! 
   real(4), dimension(nf)               :: cohe, phase 
   complex(4), dimension(nf)            :: spec 
   complex(4)                           :: cphass 
! 
   real(4), parameter                   :: dtol = 0.000001 
   real(8), parameter             :: dpi = 3.14159265358979312d0 
   real(8)                              :: dfreq, delfrq, dtd2pi 
   real(8)                              :: dphimp, dtdiff 
   real(8)                              :: drealv, dimagv 
! 
!  Temporary variables ... 
! 
   integer :: ic, ip_first, ip_last, i, iad, ispec, ifreq 
   integer :: ipair, ic1, ic2, npairs, npairs2, init, idest 
   integer :: iptcov_real, iptcov_imag, iptcoh, iptpha 
   real(4) :: sumsqr 
! 
   ierr   = 0 
! 
   ipta2  = iptar 
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! 
   if ( npts.lt.4 ) then 
     write (6,*) 'Subroutine n_mt_cohe: Error ... ' 
     write (6,*) ' npts = ', npts 
     ierr = 1 
     return 
   endif 
   if ( nf.lt.4 ) then 
     write (6,*) 'Subroutine n_mt_cohe: Error ... ' 
     write (6,*) ' nf = ', nf 
     ierr = 1 
     return 
   endif 
   if ( nc.lt.2 ) then 
     write (6,*) 'Subroutine n_mt_cohe: Error ... ' 
     write (6,*) ' nc = ', nc 
     ierr = 1 
     return 
   endif 
   if ( dt .lt. dtol ) then 
     write (6,*) 'Subroutine n_mt_cohe: Error ... ' 
     write (6,*) ' dt = ', dt 
     ierr = 1 
     return 
   endif 
   if ( iadapt.ne.0 .and. iadapt.ne.1 ) then 
     write (6,*) 'Subroutine n_mt_cohe: Error ... ' 
     write (6,*) ' iadapt = ', iadapt 
     ierr = 1 
     return 
   endif 
   iad     = iadapt 
   npairs  = nc*(nc+1) 
   npairs2 = npairs/2 
! 
!  The dimensions of the arrays appear to be sensible 
!  so we can then zero all of our output vectors ... 
! 
   do i = 1, npairs*nf 
     rcmpcov( i ) = 0.0 
   enddo 
   do i = 1, npairs2*nf 
     rcohe( i ) = 0.0 
   enddo 
   do i = 1, npairs2*nf 
     rphas( i ) = 0.0 
   enddo 
! 
!  Need to check on the indices and the array dimenions ... 
!  Remember that all ipta2( ic ) are set to ‐1 if the channel 
!  is not found ... 
! 
   do ic = 1, nc 
     ip_first = ipta2( ic ) 
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     if ( ip_first.ne.‐1 ) then 
       ip_last = ip_first + npts ‐ 1 
       if (  (ip_first .lt. 1)    .or.    & 
             (ip_last  .gt. dimrwf )    ) then 
         write (6,*) 'Subroutine n_mt_cohe: Error ... ' 
         write (6,*) ' Channel ', ic 
         write (6,*) ' PTR( ', ic,' ) = ', ip_first 
         write (6,*) '  npts          = ', npts 
         write (6,*) '  dimrwf        = ', dimrwf 
         ierr = 1 
         return 
       endif 
!      Nasty things will happen if the channel is zero ... 
!      If we detect a zero channel, we will set ipta2( ic ) 
!      to ‐1 to prevent the channel being looked at ... 
       sumsqr = 0.0 
       do i = ip_first, ip_last 
         sumsqr = sumsqr + rwf( i )**2 
       enddo 
       if ( sumsqr .lt. dtol ) then 
         ipta2( ic ) = ‐1 
       endif 
     endif 
   enddo 
! 
! Now loop around the channels and calculate the spectra ... 
! 
   do ic = 1, nc 
     ip_first = ipta2( ic ) 
     if ( ip_first .ne. ‐1 ) then 
       ip_last = ip_first + npts ‐ 1 
       idest = 1 
       do i = ip_first, ip_last 
         xi( idest ) = rwf( i ) 
         idest = idest + 1 
       enddo 
       call mtspec( npts, dt, xi, tbp, kspec, nf, f,  & 
                    si, yk=yk_i, wt=wt_i, adapt=iad ) 
       wtarr( :, :, ic ) = wt_i( :, : ) 
       ykarr( :, :, ic ) = yk_i( :, : ) 
       freqinc           = f( 2 ) 
       delfrq            = dble( freqinc ) 
     endif 
   enddo 
! 
! Use the minimum weights ‐ 
! 
   init = 0 
   do ic = 1, nc 
     if ( ipta2( ic ).ne.‐1 ) then 
       if ( init.eq.0 ) then 
         wt_i = wtarr( :, :, ic ) 
         init = 1 
       else 
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         wt_i = min( wt_i, wtarr( :, :, ic ) ) 
       endif 
     endif 
   enddo 
! 
   wt_scale = sum( wt_i**2, dim=2 ) ! Scale weights to keep power ... 
   do ic = 1, nc 
     if ( ipta2( ic ).ne.‐1 ) then 
       do ispec = 1, kspec 
         wtarr( :, ispec, ic ) = wtarr( :, ispec, ic )/sqrt(wt_scale) 
       enddo 
     endif 
   enddo 
! 
!  Now calculate the complex spectra ... 
! 
   do ic = 1, nc 
     if ( ipta2( ic ).ne.‐1 ) then 
       do ifreq = 1, nf 
         do ispec = 1, kspec 
           dyk_i(ifreq,ispec) =    & 
             wtarr( ifreq, ispec, ic )*ykarr( ifreq, ispec, ic ) 
         enddo 
       enddo 
       si = sum( abs(dyk_i)**2, dim=2 ) 
       dykarr(:,:,ic) = dyk_i(:,:) 
       sarr( :, ic )  = si( : ) 
     endif 
   enddo 
! 
!  Now loop around all pairs and calculate the cross‐spectra ... 
! 
   ipair  = 0 
   do ic1 = 1, nc 
     do ic2 = ic1, nc 
       ipair  = ipair + 1 
       if ( ipta2(ic1).ne.‐1 .and. ipta2(ic2).ne.‐1 ) then 
         dtdiff = dtimrel( ic1 ) ‐ dtimrel( ic2 ) 
         dtd2pi = 2.0d0*dpi*dtdiff 
         dfreq  = 0.0d0 
         do ifreq = 1, nf 
           dphimp = dtd2pi*dfreq 
           drealv = dcos( dphimp ) 
           dimagv = dsin( dphimp ) 
           cphass = cmplx( real(drealv), real(dimagv) ) 
           spec( ifreq ) =  & 
              sum( dykarr(ifreq,:,ic2) * conjg( dykarr(ifreq,:,ic1) ) ) 
           spec( ifreq ) = spec( ifreq )*cphass 
           cohe( ifreq ) =  & 
              (abs(spec(ifreq)))**2/(sarr(ifreq,ic1)*sarr(ifreq,ic2)) 
           phase( ifreq ) = & 
              atan2( aimag( spec(ifreq) ), real( spec(ifreq) )  ) 
           dfreq  = dfreq + delfrq 
         enddo 
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!        ! 
!        ! OK ‐ we have calculated the complex values ... 
!        ! Now we need to put them into our output arrays in the 
!        ! right places ... 
!        ! 
         iptcov_imag = 2*ipair 
         iptcov_real = iptcov_imag ‐ 1 
         iptcoh      = ipair 
         iptpha      = ipair 
         do ifreq = 1, nf 
           rcmpcov( iptcov_real ) = real( spec(ifreq) ) 
           rcmpcov( iptcov_imag ) = aimag( spec(ifreq) ) 
           rcohe( iptcoh )        = cohe( ifreq ) 
           rphas( iptpha )        = phase( ifreq ) 
           iptcov_real = iptcov_real + npairs 
           iptcov_imag = iptcov_imag + npairs 
           iptcoh      = iptcoh      + npairs2 
           iptpha      = iptpha      + npairs2 
         enddo 
!        ! 
       endif 
     enddo 
   enddo 
! 
   return 
   end 
!  
 

 
 
The routine was tested initially by reproducing the matched field classification of the 

mining events previously evaluated using the method described by Harris & Kværna 
(2010) and references therein. When generating covariance matrices from which 
empirical steering vectors were to be derived, it became routine practice to calculate 
several estimates in overlapping time-windows by shifting the start of the data window 
along by a single sample, and then using a mean of the resulting normalized covariance 
matrices. For example, if 121 samples (3 seconds on 40 Hz data) were to be used for a 
covariance matrix estimate, we would frequently calculate 20 estimates on consecutive, 
overlapping data segments, requiring a total of 141 samples (or 3.5 seconds). 
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List of Symbols, Abbreviations, and Acronyms 
 
AFRL Air Force Research Laboratory 
EMFP Empirical Matched Field Processing 
SASC Slowness and Azimuth Station Correction 
 




